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Abstract In this study, we performed several DFT, MP2, and
BD(T) calculations on the 1,2-H shift reactions of two
diaminocarbenes (1, 2) and a diamidocarbene (3) using the
Gaussian 09 program. In Gaussian 09, the BD(T) method
keyword requests a Brueckner doubles calculation including
a perturbative triples contribution. Although N-heterocyclic
carbenes (NHC) are typically known for their exceptional σ-
donor abilities, recent studies have indicated that π-
interactions also play a role in the bonding between NHCs
and transition metals or BX3 (X =H, OH, NH2, CH3, CN, NC,
F, Cl, and Br) (Nemcsok et al. Organomet 23:3640–3646,
2004, Esrafili. J Mol Model 18:2003–2011, 2012). In order
to study the importance of π-interactions between carbenes
and transition metals, Hobbs and co-workers (Hobbs et al.
New J Chem 34:1295–1308, 2010) focused on the synthesis
of NHCs with reduced-energy lowest unoccupied molecular
orbitals. By introducing an oxalamide moiety into the hetero-
cyclic backbone, they found the resulting carbene possessed
higher electrophilicity than usual NHCs. According to our
results, the N,N'-diamidocarbene should be more stable than
the diaminocarbenes with respect to the 1,2-H shift reaction.
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Introduction

Carbenes are neutral compounds that contain divalent carbons
with only six electrons in their valence shells [1]. Carbenes are
commonly generated from diazoalkanes (R2C = N = N) via

photolytic, thermal, or transition metal-catalyzed processes
[2]. For many years, carbenes were thought of only as tran-
sient species. However, in 1991, Arduengo and coworkers
successfully isolated a nucleophilic carbene, structurally rep-
resented by 1 (Scheme 1) [3]. The X-ray structure of their
compound revealed that the N–C bond lengths in the ring of
the N-heterocyclic carbene (NHC) were shorter than those in
the parent imidazolium compound, indicating that the N-C
bonds had very little double bond character [3]. Since then,
various quantum chemical calculations have been performed
to investigate the peculiar stability of these Arduengo-type
NHC carbenes [4–9]. The results showed that cyclic delocal-
ization and/or resonance (6πe-) in the imidazole ring were not
dominant factors in their stabilization [4–9]. Indeed, in 1995,
Arduengo and coworkers successfully synthesized the corre-
sponding saturated carbene, 2 (Scheme 1) [10].

NHCs have played vital roles in a variety of chemical
reactions [11]. For example, stable NHCs have become an
important class of ligands in homogeneous catalysis [11,
12]. This is due to the fact that the σ-symmetric lone pair
on the carbenic carbon allows NHCs to form strong σ-
coordination bonds with transition metals. Although they
are typically known for their exceptional σ-donor abilities
[13], recent studies have indicated that π-interactions also
play a role in the bonding between NHCs and transition
metals [14–19]. This π-interaction involving NHCs is pres-
ent not only in transition metal complexes, but also in Lewis
acid–base pairs such as imidazol-2-ylidene–BX3 (X = H,
OH, NH2, CH3, CN, NC, F, Cl, and Br) [20]. In order to
study the importance of π-interactions between carbenes
and transition metals, Hobbs and co-workers focused on pre-
paring NHCs with reduced-energy lowest unoccupied molec-
ular orbitals (LUMOs) [21]. By introducing an oxalamide into
the heterocyclic backbone (e.g., 3, Scheme 1), they found that
the resulting carbene possessed higher electrophilicity than
usual NHCs.
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In NHCs, the filled nitrogen 2p orbitals interact strongly
with the unoccupied carbon 2p orbital. However, with the
insertion of the oxalamide fragment into the heterocyclic
backbone, new resonance structures reduce such orbital in-
teractions. The resonance in 3 can be represented as shown
in Scheme 2. Owing to this difference, the presence of the
oxalamide moiety in the heterocyclic backbone should exert
additional influence on the heterocyclic carbene other than
on its electrophilicity.

In this study, our goal was to investigate the difference in
the relative kinetic stabilities of singlet-state N-heterocyclic
carbenes with respect to singlet-state N,N'-diamidocarbenes.
The 1,2-H shift reactions shown in Scheme 3 were chosen as
prototypes for these comparisons. The higher the barrier, the
greater the stability of the carbene. Carbene 4 (Scheme 4) was
also considered to ensure a more systematic comparison.

Theoretical aspects

All calculations were performed using the Gaussian 09 pro-
gram [22]. The second-order many-body perturbation method
(MP2), six hybrid generalized gradient approximation density
functional theory (GGA DFT) functionals (B3LYP, B3P86,
B3PW91, MPW1LYP, MPW1PW91, and MPW1K), and six
hybrid meta-GGA DFT functionals (TPSSh, M05, M05-2X,
M06-HF,M06, andM06-2X) were chosen and combinedwith
the correlation-consistent triple-ξ basis set, cc-pVTZ [23–35].
The difference between a hybrid GGA DFT functional and a
hybridmeta-GGADFT functional is whether the up and down
spin kinetic energy densities are neglected.

All three points of interest, including reactants, transition
states (TS), and products, on the potential energy surfaces
(PES) of the isomerization reactions were investigated. All

stationary points were positively identified as equilibrium
structures (numbers of imaginary frequency (NIMAG=0))
or transition states (NIMAG=1). For the transition states,
motions corresponding to the imaginary frequency were
checked visually. All mentioned energetic values were
corrected for zero point energies (ZPE). To obtain more accu-
rate energetic values, single-point energy calculations were
also performed at the BD(T)/cc-pVQZ//MP2/cc-pVTZ plus
the MP2-optimized zero-point vibrational energies [hereafter
designated as BD(T)] [36]. The most accurate wavefunction
which is possible to construct for a given basis is full CI (FCI),
which includes all excitations. Brueckner orbitals are defined
to be those orbitals for which the coefficients of the single
replacement determinants ϕi

a in the FCI expansion are zero
[37]. In Gaussian 09, the BD(T) method keyword requests a
Brueckner doubles calculation including a perturbative triples
contribution. The MP2 and BD(T) calculations in this study
did not include core electron excitations, to conserve compu-
tational resources. This simplification was acceptable because
the core electrons are more inert than the valence electrons;
this approach has been adopted in related studies [38]. For the
BD(T) method, the core orbitals were updated to conform to
the condition T1=0 during the computing procedure.

Natural bond orbital (NBO) analysis was performed using
NBO 5.9, implemented in Gaussian 09 [39]. NBOs represent
orthonormal sets of localized “maximum occupancy” orbitals
that describe the molecular bonding pattern of electron pairs to
yield the most accurate Lewis-like description of the total N-
electron density.

Results and discussion

The most suitable DFT functional

The accuracies of the chosen DFT functionals were investi-
gated by the relative errors of the calculated barriers (Ea) and
heats (ΔHr) of the isomerization of 1 (Scheme 2) with
respect to those of BD(T). The values calculated by the
chosen methods are summarized in Table 1. For compara-
tive purposes, previously published results are also summa-
rized in the table [40].

As the calculated barrier of a DFT functional shows less
deviation from that of BD(T), it can be said that the DFT
functional has a higher accuracy. Therefore, two relative
errors (ΔE1 and ΔE2) were introduced as Eqs. (1) and (2):

ΔE1 ¼ EaðX Þ � Ea BDðTÞ½ �j j
Ea BDðTÞ½ �j j ð1Þ

ΔE2 ¼ ΔHðX Þ �ΔH BDðTÞ½ �j j
ΔH BDðTÞ½ �j j ; ð2Þ
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where X represents the selected DFT functionals and MP2.
The errors for the chosen methods in this study are also
summarized in Table 1. As can be seen, the chosen correla-
tion functional had an influence on the Ea and ΔHr of the
isomerization of 1. For example, both ΔE1 and ΔE2 of
B3LYP were less than those of B3P86. Also, the hybridiza-
tion parameters of the hybrid DFT functional influenced the
Ea and ΔHr values. For example, the MPW1K functional
can be viewed as a reparameterized MPW1PW91 functional
[29]. ΔE1 increased from 1.72 to 4.35 % as the chosen
functional was changed from MPW1PW91 to MPW1K. In
contrast, ΔE2 decreased from 2.16 to 0.585 % as the
MPW1PW91 was changed to the MPW1K functional. The
recent B3LYP results, which were different from the previ-
ously reported B3LYP results, may be ascribed to the dif-
ference in the basis sets [40].

To find a suitable DFT functional for further study, the
average relative error (ΔEav) was introduced, as given by
Eq. (3). A lower ADE value indicates a higher reliability of
the DFT functional results.

ΔEav ¼ ΔE1þΔE2

2
ð3Þ

The ΔEavs of the chosen methods in this study are also
listed in Table 1. As shown, the hybrid meta-GGA function-
al, M06-2X, had the smallest ΔEav among the chosen
methods. Therefore, the following investigation was mainly
based on the M06-2X/cc-pVTZ theoretical level.

The converged geometries of 1, 1TS (the transition state
of the isomerization reaction), and 1Prod (the 1,2-H shift
isomer of 1) are depicted in Fig. 1. As shown, our M06-2X
results predicted a later transition state for the 1,2-H shift
reaction of 1 than the previous B3LYP calculations.
According to Hammond’s postulate, a later transition state
corresponds to a larger barrier height and lower exothermi-
city [41]. Indeed, as indicated in Table 1, the M06-2X/cc-
pVTZ theoretical level predicted a higher barrier by 4.2 kcal
mol−1 than the B3LYP/6-31G* calculations, and the exo-
thermicity of the 1,2-H shift reaction of 1 was lower by 4.
7 kcal mol−1, based on the M06-2X/cc-pVTZ theoretical
level. Advanced inspection of Fig. 1 shows that 1 has C2v

symmetry. Such an isomerization reaction may be driven by
the formation of a stronger C-H bond (99.4 kcal mol−1) from
a weaker N-H bond (93.5 kcal mol−1) [42]. However, 1Prod
possesses lower symmetry due to the difference in the
lengths of its two C-N bonds.

Natural bond orbital (NBO) analyses were performed to
investigate the electronic properties of 1 and 1Prod. These
results are summarized in Table 2. The bond orders listed in
Table 2 are based on the Wiberg bond index matrix in the
natural atomic orbital (NAO) basis [43]. Inspection of
Table 2 indicates that the bond order between nitrogen and
the original carbenic carbon increased once the 1,2-H shift
reaction occurred. At the same time, the bond order between
the other nitrogen and the carbenic carbon decreased from
1.286 to 1.212. All the mentioned lone pairs were mainly
hybridized by the s and p orbitals of carbon or nitrogen. In
contrast, the d orbitals seemed to have no contribution to the
lone pair of the carbenic carbon or nitrogen.

The isomerization reactions of 1, 2, 3, and 4

According to the comparisons above, the M06-2X function-
al was chosen to study the 1,2-H shift reactions for 2–4. The
transition states (TS) corresponding to the isomerization
reactions of 2, 3, and 4 are depicted in Fig. 2. Notably, 4
possessed both amido- and amino-type nitrogens. Therefore,
4 exhibited two transition states for the 1,2-H shift. For
easier comparison, the previous results for 2TS are also
summarized in Fig. 2 [40]. Similarly, the M06-2X/cc-pVTZ
theoretical level predicted a later transition state for 2 than
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the B3LYP/6-31G* theoretical level. The barrier heights and
the heats of reaction with respect to the chosen carbenes in
this study are listed in Table 3.

As listed in Table 3, 3 must overcome the largest activa-
tion energy to undergo a 1,2-H shift reaction. Both the
results of the M06-2X/cc-pVTZ calculations and those at
the B3LYP/6-31G* theoretical level indicated that 2 had a
larger barrier height for the 1,2-H shift reaction than 1.
Similarly, among all carbenes in this study, they were less
stable than their 1,2-H shift isomers, according to the cal-
culated heats of the isomerization reactions, all of which
were negative. This may be due to the fact that the bond
energy of a C-H bond is larger than that of a N-H bond [42].
To obtain a quantitative characterization of the position of
the transition state on the PES, two parameters were intro-
duced, as shown in Eqs. (4) and (5) [44–48]:

c 6¼ Marcusð Þ ¼ 0:5þ ΔHr

8Ea
ð4Þ

c 6¼ Millerð Þ ¼ 1

2� ΔHr
Ea

� � : ð5Þ

The calculated values of χ≠(Marcus) and χ≠(Miller) are
also listed in Table 3.

In the theory of chemical reactions, it is important to know
the position of the transition state. The aforementioned

Fig. 1 M06-2X-optimized geometric parameters for 1, 1TS, and
1Prod. Bond lengths are given in Å and bond angles, in degrees.
Parenthetical B3LYP values were previously reported in ref. [40]

Table 1 Ea, ΔHr (both in kcal mol−1), ΔE1, and ΔE2 for the isomerization of 1

C
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N1

C2

N3

H

H
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N1
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N1

C2

N3

H

H

H
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1                                                     1TS                                                    1Prod

 Ea ΔHr ΔE1 ΔE2 ΔEav

B3LYP 41.6 -26.4 1.37 % 1.23% 0.685% 
B3P86 40.5 -26.6 2.70% 1.91% 2.30% 
B3PW91 40.4 -26.8 2.96% 2.48% 2.72% 
MPW1LYP 42.4 -26.2 1.73% 0.457% 1.09% 
MPW1PW91 40.9 -26.7 1.72% 2.16% 1.94% 
MPW1K 43.5 -26.3 4.35% 0.585% 2.47% 
TPSSh 40.0 -27.0 3.92% 3.38% 3.65% 
M05 37.7 -27.0 9.51% 3.33% 6.42% 
M05-2X 42.8 -26.6 2.84% 1.73% 2.28% 
M06-HF 45.5 -24.5 9.21% 6.18% 7.70% 
M06 39.8 -26.1 4.56% 0.0630% 2.31% 
M06-2X 41.5 -25.9 0.343% 0.995% 0.669% 
MP2 39.3 -29.7 5.70% 13.8% 9.75% 
Previous 37.3a -30.5a 10.4% 16.8% 13.6% 
BD(T) 41.7 -26.1    

a The ZPVE-corrected results of Ea and ΔHr from ref. [40]
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Hammond’s postulate is a qualitative relationship between the
transition state position and the energetics of the reaction [41].
Based on this postulate, the transition state for an endothermic
reaction is product-like, whereas it is reactant-like for an

exothermic reaction. Several models have subsequently
been developed to quantitatively characterize the posi-
tion of the transition state. In 1968, Marcus suggested
an expression for the position of the transition state (χ≠)
that can be represented as Eq. (4) [44]. Although this
equation was originally proposed for electron-transfer
reactions, Murdoch and others pointed out that Eq. (4)
could also be applied to other kinds of reactions [47,
48]. In 1984, Miller devised another formalism to de-
scribe the relationship between the transition state posi-
tion and the energetics of the chemical reaction (Eq.
(5)) [45]. Both the Marcus and Miller parameters indi-
cate that the transition state is closer to the reactant
(product) as the value of χ≠ is smaller (larger). The
values of the Marcus and Miller parameters are both
within 0 and 1, i.e., 0≤χ≠(Marcus), χ≠(Miller)≤1. The
limitation values, 0 and 1, indicate the reactants and
products, respectively. As listed in Table 3, the calcu-
lated values for the Marcus and Miller parameters were
<0.5, which indicates that the 1,2-H shift transition
states for these carbenes are all reactant-like. A closer
inspection of Table 3 shows that the previous B3LYP
results gave earlier transition states for 1 and 2 [40].
Among the studied carbenes, all must overcome large
barriers to undergo 1,2-H shift reactions. This may be in
agreement with the well-known evidence that the stabil-
ities of N-heterocyclic carbenes do not depend on
substituent-migrating reactions, but rather on their

Fig. 2 The M06-2X-optimized geometries of the transition states for
2, 3, and 4 (bond lengths in Å, bond angles in degrees). Parenthetical
B3LYP values were previously reported in ref. [40]

Table 2 NBO analyses of 1 and 1Prod
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1                                                 1Prod

dorP11
Bond order of C2-N1 212.1682.1

Bond order of C2-N3
a 575.1682.1

Hybrids of the lone pair of C2 s:49.18% 
p:50.68% 
d:0.15% 
f:0.00% 

− 

Hybrids of the lone pair of N1 s:0.00% 
p:99.94% 
d:0.02% 
f:0.04% 

s:0.00% 
p:99.95% 
d:0.01% 
f:0.04% 

Hybrids of the lone pair of N3
a s:0.00% 

p:99.94% 
d:0.02% 
f:0.04% 

s:34.75% 
p:64.98% 
d:0.26% 
f:0.00% 

a The nitrogen atom on which the 1,2-H shift reaction occurs.
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Table 3 Barriers (Ea), and reaction enthalpies (ΔHr) for the 1,2-H shift reactions (in kcal mol−1) of 1, 2, 3, and 4
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1 X = Y = CH
2 X = Y = CH2
3 X = Y = CO
4 X = CH2, Y = CO

Ea ΔHr χ≠(Marcus) χ≠(Miller) 
1 41.5 

37.3a
-25.8 
-30.5a

0.4222 
0.3978a

0.3813 
0.3549a

2 43.1 
37.9a

-19.9 
-25.4a

0.4424 
0.4162a

0.4063 
0.3745a

3 52.8 -18.6 0.4560 0.4251 
4 52.5 

44.8b
-16.8 
-21.9b

0.4600 
0.4389b

0.4310 
0.4018b

a The values in italics are the previously reported B3LYP/6-31G* results from ref. [40]
b The results for the 1,2-H shift reaction on N1 in 4

Fig. 3 Reaction energy profiles
and Marcus parameters for the
1,2-H shift reactions of 1–4
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dimerization [8, 40, 49]. The reaction profiles and the
calculated Marcus parameters for the 1,2-H shift reac-
tions of 1–4 are depicted in Fig. 3. According to our
results, the insertion of the oxalamide fragment did not
decrease the stability of the heterocyclic carbene
containing nitrogen with respect to the 1,2-H shift reac-
tion. Indeed, the stability even increased.

For a more systematic study, the comparison was not
only performed on the corresponding transition states but
also on the reactants (2, 3, and 4) and the products (2Prod,
3Prod, 4Prod, and 4Prod1). The M06-2X converged ge-
ometries were compared first. The optimized geometries of
2, 3, and their corresponding products (2Prod, 3Prod) are
summarized in Fig. 4. To facilitate comparison, the previ-
ously reported B3LYP results for 2 are also listed in Fig. 4.
For systematic comparison, the optimized geometries of 4
and its corresponding products (4Prod and 4Prod1) are
depicted in Fig. 5.

As depicted in Fig. 4, the B3LYP/6-31G* theoretical
level gave a longer C2-N1 bond length and a smaller ∠N1-
C2-N5 bond angle for 2 than did the M06-2X/cc-pVTZ
theoretical level. The optimized geometry of 3 was different
from that determined experimentally by X-ray structural
analysis for the potential N-heterocyclic carbene precursor,

2-chloro-1,3-bis(2,6-dimethylphenyl)imidazolidine-4,5-
dione [21]. As depicted in Fig. 3, the bond length of C2-
N1(amido) in 3 was longer than that of C2-N1(amino) in 2.
This can be rationalized by the reduction of the strong
interaction between the filled nitrogen 2p orbitals with the
unoccupied carbenic 2p orbital by the resonance between
N(amido) and the carbonyl group. A similar situation can be
seen by comparing the two C-N bond lengths in 4 (Fig. 5).
As depicted in Figs. 1, 4, and 5, the 1,2-H shift reactions for
all studied carbenes were accompanied by a shortening of
the C2-N3 bond length. For example, the C2-N3 bond length
of 1 decreased from 1.360 to 1.306 Å as the 1,2-H shift
reaction occurred.

Next, the electric properties of the carbenes and corre-
sponding products in this study were compared. The NBO
analyses were performed on 2, 3, 4, and their 1,2-H shift
isomers, and the results are summarized in Table 4. As shown,
the bond order of the C2-N1(amido) bond was smaller than
that of the C2-N1(amino) bond. For example, the bond order of
C2-N1(amido) was 1.214 in 3. However, the bond order of C2-
N1(amino) was calculated to be 1.315 in 2. This was due to the
smaller interaction between the filled nitrogen 2p orbitals with
the unoccupied carbon 2p orbital in 3 than in 2. The compar-
ison of the bond orders of the two C-N bonds in 4 also showed
the same trend. Similarly, the lone pair of C or N was mainly
hybridized by the s and p orbitals of C or N.

Fig. 4 DFT-converged geometries of 2, 3, and their corresponding
1,2-H shift products (2Prod, 3Prod). Bond lengths are given in Å, and
the angles, in degrees. aPreviously reported B3LYP values from ref.
[40]. bX-ray structural analysis data for 1b from ref. [21]

Fig. 5 DFT-converged geometries of 4 and its corresponding 1,2-H
shift products (4Prod, 4Prod1). Bond lengths are given in Å, and the
angles, in degrees
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Conclusions

In summary, the following conclusions can be drawn from
the calculations on the 1,2-H shift reactions of the carbenes
depicted in Schemes 1 and 4:

(1). Among the chosen DFT functionals and MP2
methods, M06-2X produced the smallest ΔE1 and
ΔE2 with respect to BD(T).

(2). According to the results of the M06-2X functional, the
insertion of the oxalamide fragment did not destabilize
the N-heterocyclic carbene with respect to the 1,2-H
shift reaction.

(3). Because of the resonance between the N(amido) and
the C = O group, the interaction between the filled
nitrogen 2p orbitals with the unoccupied carbenic 2p
orbital was weakened. Therefore, the bond order of the
C-N bond was calculated to be smaller in 3 than in 2.

N,N′-diamidocarbenes have shown significant synthetic
utility [51–53]. For example, Lee et al. found that N,N′-
diamidocarbenes were ambiphilic, and could behave as
good electrophiles and good nucleophiles [50]. We believe

that our results could provide information to better rational-
ize the reactivity of N,N′-diamidocarbenes.
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